Syllabus

Advanced Hydrology (Revised August 2024) CE 20644, Credits: 3

Prerequisite: Engineering Hydrology, Environmental Engineering, Advanced Mathematics, Computer Programming

Course Description

This course provides a comprehensive overview of the concepts behind river basin hydrology and land-surface modeling. It covers key topics such as river basin terminology and classification, principles of channel network formation, river basin hydro-geomorphologic characteristics, conceptual frameworks for hydrologic modeling, and the physical basis of water cycle processes in land-surface models. The course also explores stochastic transport of water and solute in hydrological systems, including time-variant travel time distributions.

Course Outline

- River Basin Terminology and Classification (2 sessions)
 - What Is a River Basin?
 - River Basin Features (Divide, Source, Confluence, Tributary, Mouth)
 - River Basin Classification
- Principles of Channel Network Formation (2 sessions)
 - How a Channel Network Forms
 - Channel Initiation Area
 - The Practical Implication of Channel Initiation Area
 - How to Determine the Channel Initiation Area
- River Basin Hydro-Geomorphologic Characteristics (5 sessions)
 - River Network Terminology
 - Ordering of River Network
 - Horton Laws
 - Self-Similarity in River Basins
 - Tokunaga Trees
 - Hack's Law
 - Hydraulic-Geometry Relationships
 - Tests of Hortonian and Tokunaga Self-Similarity
 - Physiographic Attributes of a River Basin
 - The Width Function
- Conceptual Frameworks for Hydrologic Modeling (2 sessions)
 - Model Classification based on Conceptual Framework
 - Model Classification based on Spatial Structure (Lumped vs. Distributed)
- Introduction to Land-Surface Models (1 session)

- Physical Basis of Water Cycle Processes in Land-Surface Models (11 sessions)
 - Water Balance Components at Surface (Precipitation, Interception, Dripping, Evaporation from Vegetation, Throughfall, Transpiration, Evaporation from Soil, Snowmelt, Surface Runoff, Infiltration)
 - Runoff Generation Mechanisms
 - Partitioning of Soil Water between Surface Storage, Surface Runoff, and infiltration
 - Subsurface Flow (Subsurface Flow Structure, Confined and Unconfined Aquifers, Darcy's Equation, Soil Hydraulic Properties, Flow in Unsaturated Soils, Soil-Water Characteristic Curves, Richards' Equation, Coupling of Surface and Subsurface Flow, General Flow Equation and its Applications in Confined and Unconfined Aquifers)
- Energy Balance and Evapotranspiration at Earth's Surface (4 sessions)
 - Classification of Approaches to Estimate Evapotranspiration
 - Energy Balance-based Method to Estimate Evapotranspiration
 - Radiative Fluxes at the Vegetated and Non-Vegetated Surfaces
 - Turbulent Diffusion Approach to Estimate Evapotranspiration
 - Eddy Covariance Method to Estimate Evapotranspiration
 - Monin-Obukhov Similarity Theory
- Stochastic Transport of Water and Solute in Hydrological Systems (5 sessions)
 - Overview of Unit Hydrograph Theory: Concept, Assumptions, and Limitations
 - Theory of Time-Variant Travel Time Distribution: Motivation
 - Residence Time, Travel Time, and Life Expectancy of Water
 - The Fokker-Plank Equation and Age-Mass Density Function
 - Analytical Expressions for the Residence and Travel Time Distributions
 - The Concept StorAge Selection (SAS) Function
 - SAS Function Estimation Methods

References:

- "Runoff Prediction in Ungauged Basins" by Blöschl et al., Cambridge University Press, 2013.
- "Land Surface Hydrology, Meteorology, and Climate: Observations and Modeling", Lakshmi V., J. Albertson, and J. Schaake, American Geophysical Union, 2013.
- "Fractal river basins: chance and self-organization", I. Rodríguez-Iturbe & A. Rinaldo, Cambridge University Press, 2001.
- "Water-Resources Engineering" by David A. Chin, Pearson; 3rd edition, 2012.
- "Rainfall-runoff modelling: the primer" by K. J. Beven, John Wiley & Sons, 2012.